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The ratio of mesoscale convective system precipitation to total
precipitation increases in future climate change scenarios

Alex M. Haberlie ®'™, Walker S. Ashley @', Victor A. Gensini

' and Allison C. Michaelis'

Mesoscale convective systems (MCSs) are a substantial source of precipitation in the eastern U.S. and may be sensitive to regional
climatic change. We use a suite of convection-permitting climate simulations to examine possible changes in MCS precipitation.
Specifically, annual and regional totals of MCS and non-MCS precipitation generated during a retrospective simulation are
compared to end-of-21st-century simulations based on intermediate and extreme climate change scenarios. Both scenarios
produce more MCS precipitation and less non-MCS precipitation, thus significantly increasing the proportion of precipitation

associated with MCSs across the U.S.
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INTRODUCTION

Mesoscale convective systems (MCSs) and their precipitation are
important to regional hydroclimates and, thus, numerous aspects
of society'. Concerningly, MCS precipitation may be changing??,
and at a rate differing from other types of precipitation events®
(non-MCS precipitation). This is important because the character
MCS and non-MCS precipitation (e.g., rate, duration, areal cover-
age, etc.) are fundamentally different>” and produce contrasting
hydrological responses® and societal impacts®'®. However, few
studies have examined future changes in MCS precipitation'', and
none have examined how MCS precipitation may change relative
to non-MCS precipitation due to the difficulties associated with
running convection-permitting regional climate models (CP-
RCMs'213). Although CP-RCMs are necessary for properly simulat-
ing meso-gamma processes associated with deep, moist convec-
tion (including MCSs'), few CP-RCM climate change simulations
with sufficiently long study periods (e.g., = 10 years) and domains
encompassing the conterminous United States (CONUS) exist'>~'°,
CP-RCMs are capable of decomposing MCS and non-MCS
precipitation, and examining how these two categories of
precipitation respond to climate change scenarios will improve
our understanding of regional climate change in the central and
eastern CONUS™2°, Using a suite of simulations driven by a CP-
RCM™, we examine how MCS and non-MCS precipitation may
change relative to one another in two potential climate change
realizations.

PRECIPITATION IN A RETROSPECTIVE AND TWO END-OF-
CENTURY SIMULATIONS

We assess trends in MCS, non-MCS precipitation, and total (ALL)
precipitation using output from a CP-RCM for a retrospective
simulation (HIST, 1990-2005) and two end-of-21st-century (FUTR
4.5 and FUTR 8.5; 2085-2100) simulations. The spatial pattern of
MCS precipitation in HIST (Fig. 1b) is similar to observations?'. MCS
precipitation accumulation in HIST maximizes over Louisiana and
decreases in step with distance from the Gulf of Mexico, while
non-MCS precipitation maximizes over parts of the Northeast
(Fig. 1c). For the eastern CONUS (ECONUS; Fig. 1a.i-v), the spatial
pattern of ALL precipitation is more correlated with non-MCS

precipitation than it is with MCS precipitation (r,on_mcs = 0.75;
I'mes = 0.66; p < 0.05). The difference in spatial correlation between
ALL precipitation and MCS and non-MCS precipitation is smallest
for the Southern Plains (rhon_mes = 0.97; e = 0.99; p < 0.05) and
largest for the Northeast (fnon mes=0.91; rmes = 0.40; p <0.05).
Previous work examining MCS and non-MCS precipitation in
observational datasets reported similar findings*.

Two regimes of ALL precipitation trends exist in both FUTR 4.5
and FUTR 8.5 across the ECONUS, with increasingly dry years in
the central and southern Great Plains, and increasingly wet years
in the Midwest, Northeast, and Mid-South (Fig. 1d, g). This pattern
is also evident in MCS precipitation trends (Fig. 1e, h), except there
are more grids with significant increases. Conversely, non-MCS
precipitation decreases in both FUTR 4.5 and FUTR 8.5 for most
locations in the ECONUS (Fig. 1f, i). Consequently, the ratio of MCS
precipitation to ALL precipitation increases significantly over most
of the ECONUS for annual (Supplementary Fig. 1) and seasonal
periods (Supplementary Figs. 2, 3, 4, and 5) in FUTR 8.5, and over
smaller portions of the ECONUS in FUTR 4.5. The distribution of
regional means of annual precipitation in HIST, FUTR 4.5, and FUTR
85 for ALL events, MCS events, and non-MCS events further
illustrates these trends (Fig. 2). Generally, annual totals of ALL
precipitation stay the same (Fig. 2a), annual MCS precipitation
increases (Fig. 2b), annual non-MCS precipitation decreases
(Fig. 2c). As a result, the ratio of MCS to ALL precipitation
significantly increases for all regions in FUTR 8.5, and all but the
Northern Plains in FUTR 4.5 (Fig. 2b). Only one region, the
Southern Plains, experiences significant decreases in ALL pre-
cipitation, whereas multiple regions experience significant
increases in MCS precipitation (ECONUS, Midwest, Southeast,
and Northeast), significant decreases in non-MCS precipitation
(ECONUS, Southern Plains, Midwest, and Southeast), or both
(ECONUS, Midwest, Southeast, Northeast). For the Southern Plains,
a significant decrease in non-MCS precipitation is the main driver
of decreases in ALL precipitation in both climate change scenarios.
In contrast, significant decreases in non-MCS precipitation in FUTR
8.5 for the Midwest and Southeast are offset by significant
increases in MCS precipitation, resulting in no significant
differences in ALL precipitation. The Northeast is the only region
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Fig. 1 Changes in Mean Annual MCS and NON-MCS Precipitation. Mean annual precipitation stratified by event type for (a-c) HIST and the

change in mean annual precipitation relative to HIST for (

d-f) FUTR 4.5 and (g-i) FUTR 8.5. Event types include (a, d, g) ALL events, (b, e, h)

MCS events, and (c, f, i) NON-MCS events (i.e., Precipitation from ALL events - Precipitation from MCS events). Significant differences relative to
HIST are noted in (d-i) using the Mann-Whitney U test (p < 0.05). The subregions in (a) are the (i) Northern Plains, (ii) Southern Plains, (iii)
Midwest, (iv) Southeast, and (v) Northeast. The eastern CONUS (ECONUS) is defined as the combination of regions i-v.

to experience significant increases in MCS precipitation in both
FUTR 4.5 and FUTR 8.5.

DISCUSSION

Since MCSs are often associated with high precipitation rates that
can be extreme and distributed over large areas for extended
periods®~7, “replacing” non-MCS precipitation with MCS preC|plta-
tion may result in fundamentally different hydrologic responses®.
Thus, even for locations without significant changes in ALL
precipitation, the “character” of precipitation may change??
Differing trends in MCSs and non-MCS precipitation may be
related to projected increases in instability and convective
inhibition?3-2¢ and the resulting suppression of weak convection’.
MCSs may also have an advantage over non-MCS events in the
future due to possible increases in updraft size'" and stronger cold
pools?’. Future work will use CP-RCM output from multiple climate
change scenarios to specifically examine the duration, intensity,
and recurrence of future precipitation events, pertinent environ-
mental changes, and potential influences on hydrologic
responses.
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METHODS

Regional climate modeling approach

Mesoscale convective system (MCS) activity is simulated for a
retrospective period (HIST; 1990-2005), and two end-of-21st-
century climate change scenarios (FUTR 4.5 and FUTR 8.5
2085-2100). We use RCP 4.5 and RCP 8.5 from the Community
Earth System Model (bias-corrected CESM*2°) and the Weather
Research and Forecasting Model (WRF-ARW v.4.1.2) to perform
dynamical downscaling to a 3.75km grid encompassing the
CONUS'™. Variables such as accumulated precipitation and
simulated composite reflectivity®® are saved at 15 min intervals.
Precipitation produced by the model is consistent with long-term
observations'®, and the frequency of various simulated reflectivity
thresholds are consistent with observations?°. These two variables
are commonly used to identify proxies of thunderstorm activity,
including MCSs, in CP-RCMs'11423-25:31,

Identifying MCS precipitation

MCSs are identified in simulated composite (column maximum)
reflectivity grids as in previous work3': (1) MCS slices are extracted
from 15min simulated composite reflectivity (Supplementary
Fig. 6); (2) Qualifying MCS slices are tracked using spatial overlap

Published in partnership with CECCR at King Abdulaziz University



Mean Annual Precipitation
All

1600 g]

1 HIST A HIST&FUTR4.5 (p <0.05) o
=3 FUTR4.5 m HIST & FUTR 8.5 (p < 0.05)
1400 HEm FUTR 8.5
- o
1200

1000 % o éj

g 8001 1 . s 5 © 5
o o o
o
600 é ; %
LA
400 5
200
0

ECONUS Northern Southern Midwest SoutheastNortheast

Plains Plains
@ Mean Annual Precipitation
1200

Non-MCS

[ HIST A HIST & FUTR 4.5 (p < 0.05)
=3 FUTR 4.5 B HIST & FUTR 8.5 (p < 0.05)
I FUTR 8.5 o o
1000 S
o m ¢
800
° [}
O‘ . o
o
£ - o
£ 600 é I 5
° oé H °
o o o
o o
400 Q%; E
o
o % i
= o
200 e

0 ECONUS Northern Southern Midwest SoutheastNortheast
Plains Plains

A.M. Haberlie et al.

npj

Mean Annual Precipitation
MCS

1200(b_)]

1 HIST A HIST & FUTR 4.5 (p < 0.05)
3 FUTR 4.5 H  HIST & FUTR 8.5 (p < 0.05)
I FUTR 8.5
1000
800
Mo
o
£
E 600
o
400{ e "
& ° ! ° ¢ No
% o 2 o
2001 o © - @ E% é
B4 8
0

ECONUS Northern Southern Midwest SoutheastNortheast

Plains Plains
d)
0.7

Mean Annual Precipitation
Ratio of MCS to All

[ HIST A HIST & FUTR 4.5 (p < 0.05)
3 FUTR 4.5 B HIST & FUTR 8.5 (p < 0.05)
B FUTR 8.5
0.6
‘O.
LI
0.5
o
o
¢ B
T 0.4 i
|E ’o.
€ Mo = o o
0.3 % o o @
o o
© i % 4 Eo
0.2 ° o .
o
o ° o
0.1 B
o
0.0

ECONUS Northern Southern Midwest SoutheastNortheast
Plains Plains

Fig. 2 Regional Variability in Mean Annual MCS and NON-MCS Precipitation. Regional means of mean annual precipitation accumulation
(a—c) and mean annual ratios of MCS to ALL precipitation (d) for 15 respective simulation years (HIST, FUTR 4.5, and FUTR 8.5) for the regions
denoted in Fig. 1. Boxes represent the interquartile range, dots within the boxes are the means, lines within the boxes are medians, whiskers
represent the 5-95th percentile range, and outliers denoted by unfilled circles. Significant differences—determined by a p value < 0.05 using
the Mann-Whitney U test—between HIST and FUTR 4.5 (FUTR 8.5) are denoted by black diamonds (squares) above the maximum outliers.

detection, with ties (Supplementary Figs. 7 and 8) broken by
matching the most similar overlapping slices®2; and (3) Only those
tracks that last at least 3 h are considered. ALL precipitation is the
unfiltered annual or seasonal accumulation. MCS precipitation is
filtered by considering only grids that share spatiotemporal pixel
coordinates with qualifying MCS tracks. ALL and MCS precipitation
are upscaled to a ~ 75 km grid by finding the 20 x 20 grid mean of
accumulated annual or seasonal precipitation for each event type.
Finally, non-MCS precipitation is the difference between ALL and

Published in partnership with CECCR at King Abdulaziz University

MCS precipitation. The study area includes only CONUS regions
(Fig. 1) with the highest MCS frequencies?'.

Limitations

Each 15-year simulation used one set of model parameters and
one GCM due to the computational demands of CP-RCMs'%13,
Thus, long term (=10 yr) climatic variability, the impact of various
model parameter choices?’3334, and the influence of different
parent GCMs is under sampled. The modeling approach used for

npj Climate and Atmospheric Science (2023) 150



npj

A.M. Haberlie et al.

4

this work'® did result in incremental improvements in simulating
annual and seasonal precipitation over the CONUS relative to
recent work'®. That said, there are still deficiencies that may
influence the results discussed in this paper, such as a general
warm season dry bias in the ECONUS—specifically, parts of the
Southeast CONUS during the summer. Because of these issues, the
results presented here should only be interpreted as differences
between the retrospective and climate change simulations, and
not differences relative to current observations. Future work
should leverage emerging computational capabilities to further
explore these areas of uncertainty.
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